Monatshefte für Chemie 119, 1241-1244 (1988)

Darstellung und Eigenschaften einiger Bis- und Tris(diphenylphosphino)di-, tri- und tetrasilane

Karl Hassler und Sigrid Seidl

Institut für Anorganische Chemie, Technische Universität Graz, A-8010 Graz, Österreich

(Eingegangen 11. Dezember 1987. Angenommen 23. Januar 1988)

Synthesis and Properties of Some Bis- and Tris(diphenylphosphino)di-, triand tetrasilanes

Dimethyldichlorosilane, 1,2-dichlorotetramethyldisilane, 1,3-dichlorohexamethyltrisilane and methyltris(chlorodimethylsilyl)silane react with diphenylpotassiumphosphide. The resulting bis- and tris(diphenylphosphino)silanes are characterized by IR and ²⁹Si as well as ³¹P-NMR-spectroscopy.

(Keywords: Diphenylphosphinosilanes)

Organophosphorverbindungen wie etwa 1,2-Diphenylphosphinoethan ("Diphos") oder Tris(diphenylphosphinomethyl)ethan $H_3CC(CH_2PPh_2)_3$ sind als mehrzähnige Liganden zur Synthese von Metallkomplexen schon lange verwendet, Bis- und Tris(diphenylphosphino)silane dagegen bisher nicht beschrieben worden.

Ausgehend von Dichlordimethylsilan, 1,2-Dichlortetramethyldisilan [1], 1,3-Dichlorhexamethyltrisilan [1] und Tris(chlordimethylsilyl)methylsilan [2] haben wir deshalb die entsprechenden Diphenylphosphinoverbindungen dargestellt und ihre Eigenschaften untersucht.

 $\operatorname{Cl}_2\operatorname{Si}Me_2 \xrightarrow{\operatorname{KP}Ph_2} Me_2\operatorname{Si}(\operatorname{P}Ph_2)_2$

$$ClMe_2Si(SiMe_2)_nSiMe_2Cl \xrightarrow{KPPh_2} Ph_2PMe_2Si(SiMe_2)_nSiMe_2PPh_2$$

$$n = 0, 1$$

$$MeSi(SiMe_2Cl)_3 \xrightarrow{KPPh_2} MeSi(SiMe_2PPh_2)_3$$

88 Monatshefte für Chemie, Vol. 119/11

Experimenteller Teil

Die ersten Versuche zur Darstellung von $1,2-(PPh_2)_2Me_4Si_2$ zeigten, daß sich bei Verwendung polarer Lösungsmittel wie Dioxan oder *THF* stets Tetraphenyldiphosphan, aber kein Silylphosphan bildete. Erst die Verwendung von *n*-Hexan brachte den gewünschten Erfolg. Nachfolgend sei eine allgemeine Arbeitsvorschrift angeführt:

 $KPPh_2$ wird nach [3] in siedendem Dioxan dargestellt, in der Kälte als Dioxan-Addukt gefällt und im Vakuum von jeglichem Dioxan befreit. Danach wird das Kaliumdiphenylphosphid in *n*-Hexan suspendiert und unter Rühren die äquivalente Menge des Chlorsilans, gelöst in *n*-Hexan, zugetropft. Zur Vervollständigung der Reaktion erhitzt man noch einige Stunden zum Sieden, filtriert heiß und entfernt das Lösungsmittel i. V.

 $Me_2Si(PPh_2)_2$

Es verbleibt ein gelbes, honigartiges Öl, das in der Wärme in wenig Benzol gelöst wird. Beim Abkühlen fällt eine geringe Menge eines farblosen Niederschlages von Tetraphenyldiphosphan aus. Man filtriert und entfernt das Benzol i. V. Das zurückbleibende farblose Öl ist reines Me_2 Si(PP h_2)₂, das auch nach längerem Stehen nicht kristallisiert. Die Ausbeute beträgt etwa 80%.

Elementaranalyse $SiP_2C_{26}H_{26}$ (gef./ber.): % H: 6.37/6.12 % Si: 6.27/6.36

Es zeigte sich, daß alle Diphenylphosphinosilane bei der Verbrennung partiell zu SiC reagierten, so daß die Kohlenstoffanalysen stets zu niedrige Werte (1-3%) ergaben. Im Massenspektrum findet sich der Molekülpeak bei m/e = 428.1-430.1.

 $(\mathbf{P}Ph_2Me_2\mathbf{S}i)_2$

Nach dem Entfernen des *n*-Hexans verbleibt ein gelbliches Öl, das in der Wärme in Benzol gelöst wird. Nach dem Abkühlen kristallisiert etwas P_2Ph_4 aus, das abgetrennt wird. Aus der eingeengten Lösung fällt nach längerem Stehen bei + 6 °C (PPh₂Me₂Si)₂ in Form farbloser Kristalle aus. Ausbeute etwa 80%.

> Elementaranalyse $Si_2P_2C_{28}H_{32}$ (gef./ber.): % H: 6.69/ 6.63 % Si: 11.46/11.55

$Me_2Si[SiMe_2PPh_2]_2$

Nach dem Abziehen des *n*-Hexans verbleibt auch hier ein gelbliches Öl, das zur Entfernung des restlichen Tetraphenyldiphosphans in wenig C_6H_6 gelöst wird. Wie $(PPh_2)_2SiMe_2$ kann auch das Trisilanderivat nicht zum Kristallisieren gebracht werden. Die Ausbeute beträgt etwa 65%.

Elementaranalyse $Si_3P_2C_{30}H_{38}$ (gef./ber.): % H: 6.96/ 7.03 % Si: 15.57/15.47

$MeSi[SiMe_2PPh_2]_3$

Wie bei den zuvor beschriebenen Phosphinosilanen verbleibt nach dem Entfernen des *n*-Hexans ein gelbliches Öl, das in C_6H_6 gelöst wird. Nach mehrtägigem Stehen bei + 6 °C fällt das Silylphosphan in Form farbloser Kristalle aus. Ausbeute etwa 50%.

Elementaranalyse $Si_4P_3C_{43}H_{51}$ (gef./ber.): % H: 6.48/ 6.65 % Si: 14.50/14.53 Von allen Verbindungen wurden die ³¹P-(gegen H₃PO₄)- sowie ²⁹Si-(gegen *TMS*)-NMR-Spektren aufgenommen und zum Strukturbeweis herangezogen. Die gemessenen Daten sind in Tabelle 1 zusammengefaßt. Das ²⁹Si-Spektrum von (*Ph*₂P*Me*₂Si)₂ ist als X-Teil eines AA'X-Systems (A, A' = P) aufzufassen. Aus der quantenmechanischen Theorie von Spinsystemen [4] folgt, daß für den Fall $|J_{AX} + J_{A'X}| \gg 2J_{AA'}$ vier Linien gleicher Intensität auftreten sollten (dublettisches Dublett). Die Auswertung der Spektren wurde deshalb unter der Voraussetzung $|^{1}J_{SiP} + ^{2}J_{SiSP}| \gg J_{PP}$, d. h. unter völliger Vernachlässigung von J_{PP} , vorgenommen. Gleiches gilt für *Me*₂Si(Si*Me*₂P*Ph*₂)₂ und *Me*Si(Si*Me*₂P*Ph*₂)₃. Einen Hinweis darauf, daß ³J_{PSiSIP} (und erst recht ⁴J_{PSISISIP}) sehr klein ist, liefert ²J_{PSIP} mit etwa 15 Hz (z. B. in P₄(Si*Me*₂)₃ [5]). In den Protonen-NMR-Spektren zeigt sich eine Aufspaltung nur durch ³J_(PSICH) (3.9–4.2 Hz), so daß durchwegs sehr einfache Spektren resultieren. Auf ihre Wiedergabe wird in diesem Rahmen verzichtet.

Tabelle 1. 29Si- und 31P-NMR-Verschiebungen (ppm) sowie SiP-Kopplungskonstan-
tena (Hz) der Diphenylphosphinosilane

	δ (³¹ P)	δ (²⁹ Si)	ⁿ J(SiP)		Habitus des ²⁹ Si-Spektrums
$ \begin{array}{c} Me_{2}\mathrm{Si}(\mathrm{P}Ph_{2})_{2} \\ \mathrm{P}Ph_{2}Me_{2}\mathrm{Si}\mathrm{Si}Me_{2}\mathrm{P}Ph_{2} \\ Me_{2}^{*}\mathrm{Si}(\mathrm{Si}Me_{2}\mathrm{P}Ph_{2})_{2} \\ Me_{2}\mathrm{Si}(^{*}\mathrm{Si}Me_{2}\mathrm{P}Ph_{2})_{2} \\ Me^{*}\mathrm{Si}(\mathrm{Si}Me_{2}\mathrm{P}Ph_{2})_{3} \\ Me\mathrm{Si}(^{*}\mathrm{Si}Me_{2}\mathrm{P}h_{2})_{3} \end{array} \right) $	57.4 55.5 54.6 52.3	1.6 - 17.3 - 39.8 - 16.6 - 74.2 - 13.5	${}^{1}J = 44.8$ ${}^{1}J = 46.7$ ${}^{2}J = 15.6$ ${}^{1}J = 46.8$ ${}^{2}J = 19.5$ ${}^{1}J = 52.2$	${}^{2}J = 16.6$ ${}^{3}J = 3.9$ ${}^{3}J = 4.9$	Triplett dublettisches Dublett Triplett dublettisches Dublett Quartett triplettisches Dublett

^a Die Angabe der Kopplungskonstanten erfolgt unter der Voraussetzung, daß J_{PP} gegenüber $|{}^{1}J_{\text{SiP}} + {}^{2}J_{\text{SiSiP}}|$ oder $|{}^{1}J_{\text{SiP}} + {}^{3}J_{\text{SiSiSiP}}|$ vernachlässigt werden kann

Die Infrarotspektren (Tabelle 2) sind oberhalb 600 cm^{-1} praktisch identisch, da alle Schwingungen des P₂Si_n-Gerüstes unterhalb 560 cm⁻¹ liegen. Wie aus einer Reihe von Untersuchungen an phenylierten Silanen [6], Silylphosphanen [7] und Phosphanen [8] bekannt ist, verschieben kinetische Kopplungen mit SiC- bzw. PC-Schwingungen (nach *Whiffen* [9] als t(v_sSiC₂, v_sPC₂) bzw. t'(v_{as}) bezeichnet) die SiSi-, SiP- oder PP-Valenzschwingungen zu kürzeren Wellenlängen. Die bei allen Diphenylphosphinosilanen auftretende Bande bei 560—548 cm⁻¹ dürfte daher als SiP-Valenzschwingung zuzuordnen sein. Darunter liegen zwischen 510—440 cm⁻¹ die intensiven Y-Schwingungen, die teilweise die asymmetrischen SiSi-Valenzschwingungen (300—400 cm⁻¹) wiederum ist überlagert von den PC-Schwingungen (t, t'), so daß Zuordnungen ohne Normalkoordinatenanalysen nur sehr summarischen Charakter besitzen.

K. Hassler und S. Seidl: Diphenylphosphinosilane

$MeSi(PPh_2)_2^a$	$(Ph_2PMe_2Si)_2^{b}$	$Me_2\mathrm{Si}(\mathrm{Si}Me_2\mathrm{P}Ph_2)_2^{\mathrm{a}}$	MeSi(SiMe ₂ PPh ₂) ₃ ^b	Zuordnung
885 w	885 mw	880 w	885 w	
874 w	000 111	000 11	005 11	
835 vs		828 vs	835 vs	oCH.
800 vs	805 vs	800 s	805 s	pong
762 m	770 s	766 vs	772 vs	
735 vs	740 s	730 vs	738 vs	f
	720 s		725 sh	v_{a} SiC ₂
692 vs	690 vs	690 vs	695 vs	V
660 m	660 sh	665 sh	653 m	$v_s SiC_2$
618 m	615 w	620 w	625 w	s
612 w)	
560 m	550 m	548 m	550 m	vSiP
	525 m		525 sh	
505 s	500 s, b	505 s	510 s	
480 s	480 sh	485 vs, b	478 s	у
460 s		460 sh	465 s	
435 ms	445 ms	430 m	430 m	$t'(v_{as}PC_2)$
	420 ms	415 w	420 m	vSiŠi
392 ms	390 m	390 m	380 mw	$t(v_s PC_2)$
	350 ms	350 w		
330 vvw	320 mw	320 sh	320 w	
290 s	290 m	280 s	290 mw	δSiC_2

Tabelle 2. Infrarotspektren ($< 900 \text{ cm}^{-1}$) der Diphenylphosphinosilane

^a als Flüssigkeit; ^b als Nujolverreibung

Dank

Die Autoren danken dem Fonds zur Förderung der wissenschaftlichen Forschung, Wien, für die Unterstützung mit Personal- und Sachmitteln im Rahmen des Projektes P 5669.

Literatur

- [1] Ishikawa M, Kumada M, Sakurai H (1970) J Organomet Chem 23: 63
- [2] Hassler K (1986) Monatsh Chem 117: 613
- [3] Issleib K, Tzschach A (1959) Chem Ber 92: 1118
- [4] Emsley JW, Feeney J, Sutcliffe LH (1965) High resolution nuclear magnetic resonance spectroscopy. Pergamon Press, Oxford
- [5] Fritz G, Hölderich W (1975) Naturwiss 62: 573
- [6] Höfler F (1976) Monatsh Chem 107: 893
- [7] Hassler K (1984) Monatsh Chem 115: 713
- [8] Hassler K, Höfler F (1979) Monatsh Chem 110: 919
- [9] Whiffen DH (1956) J Chem Soc 1350